

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-12-26599
PREPRINT

A Proposed Data Fusion
Architecture for Micro-
Zone Analysis and Data
Mining

5th International Symposium on
Resilient Control Systems

Kevin McCarty
Milos Manic

August 2012

A Proposed Data Fusion Architecture
for Micro-Zone Analysis and Data Mining

Kevin McCarty

University of Idaho
Idaho Falls, Idaho USA

kmccarty@ieee.org

 Milos Manic
University of Idaho

Idaho Falls, Idaho USA
misko@uidaho.edu

Abstract – Micro-zone analysis involves use of data
fusion and data mining techniques in order to
understand the relative impact of many different
variables. Data Fusion requires the ability to combine
or “fuse” date from multiple data sources. Data mining
involves the application of sophisticated algorithms such
as Neural Networks and Decision Trees, to describe
micro-zone behavior and predict future values based
upon past values. One of the difficulties encountered in
developing generic time series or other data mining
techniques for micro-zone analysis is the wide
variability of the data sets available for analysis. This
presents challenges all the way from the data gathering
stage to results presentation. This paper presents an
architecture designed and used to facilitate the
collection of disparate data sets well suited for data
fusion and data mining. Results show this architecture
provides a flexible, dynamic framework for the capture
and storage of a myriad of dissimilar data sets and can
serve as a foundation from which to build a complete
data fusion architecture.

I. INTRODUCTION

With the advent of ever greater computing capability,
there is a corresponding, if not greater, capability to capture
and store large amounts of miscellaneous data. While
capturing data may be a relatively simple task, migrating
the data from raw output to a final, analyzable form usually
requires a number of additional steps, each of which can
prove difficult to design and implement [1].

The task gets even more complex when the multiple data
sets are involved [1,2]. It is useful to test differing data sets
against a given data mining algorithm to ensure the efficacy
of the algorithm is not due to “curve fitting” or some
special property of the underlying data. This also requires
any software for data mining have certain dynamic,
configurable properties in order to handle diverse data sets.

Finally, because the data sets tend to be large and number
of intermediate steps extensive, there must to be a way to
automate the entire data collection and analysis process in
order for it to be of any practical use [3].

All these requirements result in several major obstacles
that must be overcome. The first is data import. Systems
can consist of multiple data sources (such as sensors) that
output streams of data in a format, not generally suited for
storage in a database. The data must be recognized,

scrubbed and transformed for it to be of use [4]. A typical
data source configuration is depicted in Fig. 1.

Collection Point

Output

 Fig. 1. Sensors transmit data to a collection point

In addition, a wide variety of input sources often leads to

an equally diverse set of file formats to handle. Some data
might be text-delimited, others free-form, still others jagged
or fixed-length. The possibilities can be as wide-ranging as
the data sources themselves [5]. Good software engineer
techniques are needed to address to significant variation in
requirements without leading to unmaintainable or
extensible software [6, 7].

Next, there is the Extraction, Transform, Load (ETL)
process which transforms raw data into something that can
then be mined, either in relational or multi-dimensional
formats. Extraction involves migrating data from its
source, such as a file on an FTP server to a more flexible
data repository, such as a table in a relational database.
Transform involves removing bad or missing data values
moving from less suitable to more suitable data types, and
normalizing or denormalizing when appropriate [3]. The
transform process also may involve translating the data,
supplying missing values or applying derived calculations.
There is also no reason for output to reside in a specific
location. The Load process involves migrating the data
from its current location to a final repository, which can be
located virtually anywhere deemed appropriate, potentially
in multiple locations simultaneously as depicted in Fig. 2.

Fig. 2. Moving data from a collection point to external repositories

There are a number of commercial ETL tools such as

SQL Server Integration Services (SSIS), IBM Data Storage
and AdeptiaETL suite that exist for this purpose, but they
proved impractical on either a cost basis or the level of
customization required or both.

Once the data is in a destination repository, data mining
and data fusion can begin [8]. Data mining is an automated
technique where special algorithms explore data sets
looking for interesting relationships and trends. Popular
data mining techniques include Decision Trees, Neural
Network Algorithms, Hard/Soft Clustering and many others
[3]. Data fusion aids in data mining by applying temporal,
spatial or other relationships across unlike data sets in order
to discover dependencies and key influencers [8].

Finally, because the results from a data mining algorithm
can be difficult to interpret by atypical human observer,
there needs to be some sort of visual display to put the
results in context. Such a display can include charts, grids,
color variations, dials or other dashboard elements to
emphasize important results and put them in a form that can
be easily understood.

Object-oriented architectures and methodologies have
been proposed to handle complex system such as the one
described [5, 6, 9]. Such systems attempt to reduce
complexity by hiding implementation details from
consumers. They also, via abstraction, try to reuse and
extend functional components in ways that avoid code
duplication and tight coupling of components. Such
systems are easier to debug, extend and maintain and tend
to have smaller code bases [6, 10].

This paper presents a software architecture in
development designed to reduce the complexity required to
import disparate source files and provide ETL processes
used to generate relational datasets and datamarts for use in
data fusion and data mining with particular emphasis on
Time Series data although it is easily extensible to any type
of structured or semi-structured data. While initially a
standalone architecture, this design approach is adaptable
for use in commercial ETL tools or as a hybrid system
combining the power of both commercial and
customization approaches.

II. PROBLEM STATEMENT
Any system designed to handle differing file types,

import processes, source and destination types, servers and
databases and other repositories will require a lot of
customization. The challenge is to be able to handle a wide
range of individual scenarios without becoming overly
complex. Even with a relatively small number of distinct
processes the number of permutations in code can quickly
become very difficult to maintain or extend [11]. What’s

needed is an architecture that can support a diverse and
flexible set of imports, processes and destinations without
becoming overly complex. It must also be extensible
enough to accommodate additional data without require
major changes in the existing codebase.

Once the data is in the repository it must be transformed
for analysis to include creating and implementing data
fusion elements across data sets, This should also be a
flexible and dynamic process as the transformations and
data mining techniques, such as Time Series, should be
interchangeable as needed.

The architecture proposed combines the following
attributes

1. A externally configurable class library for the import
process

2. A class library and callable database objects to
manage the ETL processes and data fusion

3. Custom and commercial data mining techniques
4. Custom and commercial display tools for results

III. IMPLEMENTATION
The development environment for this project is Visual

Studio 2010. The programming language is C#. Achieving
requirement 1 (import) of the architecture required the use
of polymorphic techniques in support of the import class
library. This was due to the diversity of the data sets that
needed to be mined and variable locations where data
originated. Among the types initially supported were:

1. Delimited-text files such as csv format with different
delimiters

2. Fixed-length formatted files
3. Free-form files where data elements occurred in

regular patterns but without traditional formatting
4. Database objects

Polymorphism is a facet of object-oriented design which

provides the ability to generate objects which share similar
abstract functions and characteristics but differ only in their
specific implementation. An object of a base class can then
“morph” into any of the inherited classes through a simple
assignment operator. Consumers of that object do not need
to be aware of the specific implementation class or
methods, rather they can still treat the object in its base
form using calls to abstract methods which are
automatically overridden by the actual inherited class.

Take the example of an “animal” object. Whether a dog,
bird or person, animals perform many of the same
functions, such as eating, breathing or sleeping. A
particular implementation of “eat food” will vary from
animal to animal, but the basic function, “eat food” does
not. The animal object can expose a method “eat food”
which is then overridden by the bird object that eats seeds
from a feeder; the dog object that eats dog-food from a
bowl and a person object that dines at a restaurant.

As a result a consuming program, without knowing what
kind of animal it has or how it eats, can presume the object
in question knows how “eat food” appropriately to its type.
The consumer can also only has to invoke a single “eat

food” method to cause the animal to engage in eating
behavior. This allows any necessary state-awareness on the
part of an overall system to move from a global awareness
imposed on a system to a local one imposed on an object,
leading to fewer interdependencies among individual
components and greater system resiliency.

In addition to abstract methods overridden by
descendants, an object-oriented program can also expose
basic methods common to a set of classes. So in
polymorphism, objects inherit the base class functionality
and implement the necessary abstract methods, providing
differentiation to distinguish them from other inherited
objects. Such an approach offers a number of advantages to
the architecture.

1. Creating a standardized import interface, which is
relatively easy to describe and consume. Despite a
high degree of flexibility and complexity in the
underlying process, the consumer requires very few
lines of code to implement an import.

2. While the “import” process may vary greatly from
data source to data source, the complexity of the
individual import can be hidden within the derived
class or classes. This leads to more loosely coupled
and tightly cohesive code components.

3. Extending the import process to include new data
sources requires only deriving a new base class and
will not affect the existing implementation.

4. Use of abstract and derived classes means less
reliance on conditional statements and code
duplication that tend to make software more difficult
to maintain and debug.

As an example, consider 3 datasets. 1 is simple comma-

delimited data with headers. The second is tab-delimited
but only has headers in certain files. The third file is
comma-delimited with headers, but the data is only valid
for files that start with a date. Creating a coherent file
parser would involve coding a number of functions:

1. A function to parse the file into lines with specialized
exceptions for the header line in each file and non-
valid lines in files 2, 3.

2. A function to parse each resulting line to an import
record. Each file would need a different parser with
exceptions for the headers and any non-data lines.

3. A function to check data elements for type and
validity.

4. A function to parse the resulting data records into the
proper SQL import command.

Even a rudimentary implementation of such an
application will require a significant construction of
IF/CASE statements interspersed within each parser to
account for the many variances among the import data sets.
An execution branch in this example might have numerous
permutations to account for, each of which must be coded
and then maintained in the event of further changes. Add
additional varied datasets and the number and variety of
execution branches grows exponentially more difficult to
manage.

The component of the proposed architecture to manage
data imports to a data fusion database or warehouse follows
these basics steps:

1. A data source is identified and linked to an Import
Type object

2. The Generic Import Type object configures import
criteria and the destination connection.

3. The Generic Import Type object creates a suitable
Import Source Type object containing rules for
import and parsing the data stream.

4. The Import Source Type streams the data in and
parses it into an Import Set, which consists of
collections of records. Each record has a collection
of fields, field types and field values.

5. The Import Set then moves records to an output
destination..

The initial set of classes deal with the data itself. A class

was created to stored field or column data along with type
information. A collection of fields constitutes a record.
Each record contains a method to output itself into a string
that can be used to generate a SQL insert command or
stored procedure call. These classes are not abstract
because the potential variability of configurations is quite
small. An abstract collection of records is an ImportSet
(IS). Each ImportSet contains a connection to an output
repository along with a method to iterate through its
records, retrieve the insert command and output each
record. The ImportSet is abstract in order to support
different output repositories such as a Microsoft SQL
Server database, Oracle Server or simple text file.

The next real abstraction created deals with the problem
of different file formats. Currently, this project deals only
with file-based data sources, but other data sources, such as
a remote database are likely candidates in the future.
Implementation consists of a series of abstract objects:

ImportType (IT) – specifies the import source in general
form, and handles configuration of source/destination
options.

ImportSourceType (IST) – handles specific file formats
such as comma-delimited and any special rules for parsing
a stream into an ImportSet.

ImportSet (IS) – handles moving from memory to a data
respository.

Combining these objects allows for the creation of a
relatively simple but flexible input engine that hides much
of the underlying complexity of the import process.
Typical consumption and usage of the objects in a program
is demonstrated by the following pseudocode:

Function InputSomeData(SourceName) Returns null Begin

IT = new ImportType
IT.Configure(SourceName)
IT.DoImport

End

Function ImportSource.DoImport Returns null Begin
IST = new ImportSourceType
IS = new ImportSet
IST.ParseSourceToImportSet(IS)
IS.MoveToDestination()

End

In order to avoid excessive hard-coding of server,

database and other names within classes, a configuration
utility is under development that will allow an XML file to
be used for additional ad-hoc configuration. Use of XML
will allow for greater extensibility with a reduced need to
recompile.

IV. RESULTS
A program to both consume and demonstrate the

architecture was built using the Windows Presentation
Foundation (WPF). The core architecture was built
around the following base classes:

1. Field
2. Record

And the following abstract classes:
1. ImportSourceType
2. ImportSet
3. GenericImportType

The abstract classes contain a combination of virtual,

abstract and standard methods and properties. Several
helper functions were also created to determine the
correct objects and apply known configuration
information. Since most of the import files consist of
delimited text data, the first extension to this architecture
was for handling standard delimited file types. A
DelimitedFileType base class was created. This
extension required roughly 110 lines of code and is able
to handle any standard delimited file type.

Test 1 – A Simple File
 The first actual file type to import was a series of

windmill measurements saved out to a directory as tab-
delimited files called CAESWind data. These files were
relatively simple to process because they all consisted of
a single header line and used standard formatting with
several important execptions:

1. CAESWind data contains header information
which is inconsistent.

2. CAESWind data contains a mix of date and
numeric data.

3. CAESWind data contains bad dates which must be
ignored.

Since CAESWind files are tab-deliminated, a

CAESTabDelimintedTextType class inherited from
DelimitedFileType was created. Aside from configuration
information (which will be eliminated with the
configuration utility), the new class required approximately
50 lines of code to implement, including curly braces,

comments, exception handling and whitespace. The WPF
application used to import CAESWind data requires only 3
lines of code for implementation.

Test 2 – A Moderately Complete File
The next extension was for some hydro plant data called

IFHydro. IFHydro is also tab-deliminated with a complete
different set of problems:

1. Header data is inconsistent.
2. Some files have no data at all.
3. Some records reflect a sensor off-line, with all

zero values in the data
4. Some records are fragmented with incomplete data

Extending the DelimitedFileType to accommodate the

IFHydro data required almost exactly the same number of
lines of code despite a somewhat more complex set of
requirements.

Test 3 – A Highly Complex File
The next extension involved data from a military facility.

Called the Mates dataset, it was comma-delimited but also a
freeform file. This hybrid and inconsistent combination
created a number of issues:

1. Header data is nonexistent.
2. Data records run both vertically and horizontally

in the file.
3. Records come in groups within the file. Group

separators consist of a series of specific link
breaks and values

4. Certain data elements pertain to a single record
while other data elements pertain to all members
of a data group.

Fig. 3. Mates Data Sample

Even with some exception handling, comments and white

space, the overall implementation of the Mates Import took
roughly an hour to complete, requiring about 130 lines of

C# code. Hence the 3 extensions to the architecture to
support 3 distinctly different file import types, from raw
data to a record in a SQL Server database table, with
varying levels of complexity was accomplished using less
than 300 lines in total. In addition, no changes were
necessary to the WPF import application or any of the
underlying classes, maintaining full backward compatibility
within the class library.

V. CONCLUSION AND FUTURE WORK
Object-oriented programming was introduced with the

goal of simplifying software development by hiding or
encapsulating object complexity behind simpler to use
methods and properties [6]. Polymorphism was designed
to allow a developer to minimize code duplication and
maximize flexibility in an architecture [5, 6]. In this
initial implementation, the import of a number of very
different datasets using a relative few lines of code was
accomplished. In addition, the results indicate the overall
size of the class library need only grow slightly to
accommodate new input as well as destination formats.

The architecture clearly demonstrates both simplicity
and flexibility in addressing the problem of diverse data
imports in handling the Mates, IFHydro and CAESWind
datasets and is expected to perform similarly on
additional varied future datasets. There remains
considerable work to be done, however. It is quite likely
that certain data imports will be so large as to make it
impractical for the import set to cache records in memory
as it currently does. It will be necessary to modify the
ImportSet class to handle serialization to a file or even a
database for large raw datasets and then stream the
preprocessed records back for import.

In addition, the architecture needs to be extended to
support the other tiers of the data fusion process: Data
Mining and Display. For these, the architecture will have
to extend to support a series of pluggable data mining
algorithms, in particular, a proposed hybrid combination
of Time Series and other advanced algorithms in order to
improve overall predictive capability. Combined with
generic display elements such as dials, grids, charts, etc.
this architecture will provide a significant capability for
combining and exploring datasets of widely varying
originations, sizes and attributes. There is also currently
only limited ETL which will have to be extended to
accommodate the more stringent requirements for data
mining models. These proposed extensions are under
development and will be addressed in future work.

ACKNOWLEDGEMENTS
Work supported by the U.S. Department of Energy

under DOE Idaho Operations Office Contract DE-AC07-
05ID14517, performed as part of the Center for
Advanced Energy Studies, and the Instrumentation,
Control, and Intelligent Systems (ICIS) Distinctive
Signature of Idaho National Laboratory, and Bish’s RV.

VI. REFERENCES

[1] Y. Qing, Z. Jing and W. Haiyang, "Business Process-
Oriented Software Architecture for Supporting
Business Process Change," in International
Symposium on Electronic Commerce and Security,
2008.

[2] F. Bushmann, "Introducing the Pragmatic Architect,"
IEEE Software, pp. 10-11, Sep-Oct 2009.

[3] J. Han, M. Kamber and L. Pei, Data Mining Concepts
and Techniques, 3rd Ed., Morgan Kaufmann, 2011.

[4] K. McCarty and M. Manic, "An Adaptive Architecture
for Hydroinformatics Design and Implementation," in
International Symposium on Hydroinformatics and
Ecohydraulics, Concepcion, Chile, 2009.

[5] X. Cui, S. Yanchun and X. Sai, "Architecture Design
for the Large-Scale Software-Intensive System: A
Decision-Oriented Approach and the Experience," in
Engineering of Complex Computer Systems, 2009.

[6] R. S. Pressman, Software Engineering, A Practitioner's
Approach, 6th Ed., McGraw Hill, 2005.

[7] G. Buchgeher and R. Weinreich, "An Approach for
Combining Model-Based and Scenario-Based
Software Architecture Analysis," in Fifth International
Conference on Software Engineering Advances
(ICSEA), 2010.

[8] K. McCarty and M. Manic, "A Temporal-Spatial Data
Fusion Architecture for Monitoring Complex
Systems," in International Conference on Human
Systems Interation, 2010.

[9] M. Waterman, J. Noble and G. Allan, "How Much
Architecture? Reducing the Up-Front Effort," in
AGILE India, 2012.

[10] F. Buschmann, "Software architecture and reuse-an
inherent conflict?," in Software Reuse: Advances in
Software Reusability, 1994.

[11] O. Barais, "A framework to specify incremental
software architecture transformations," in
EUROMICRO Conference on Software Engineering
and Advanced Applications, 2005.

